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Simulation of Graded Video Impairment by Weighted Summation:
Validation of the Methodology

John M. Libert, Charles P. Fenimore, and Peter Roitman

National Institute of Standards and Technology., 100Bureau Drive, Stop 8114
Gaithersburg, MD 20899-8114

ABSTRACT

The investigation examines two methodologies by which to control the impairment level of digital video test materials. Such
continuous fine-tuning of video impairments is required for psychophysical measurements of human visual sensitivity to
picture impairments induced by MPEG-2[1] compression. Because the visual sensitivity data will be used to calibrate
objective and subjective video quality models and scales, the stimuli must contain realistic representations of actual encoder-
induced video impairments. That is, both the visual and objective spatio-temporal response to the stimuli must be similar to
the response to impairments induced directly by an encoder. The first method builds a regression model of the Peak Signal-
To- Noise Ratio (PSNR) of the output sequence as a function of the bit rate specification used to encode a given video clip.
The experiments find that for any source sequence, a polynomial function can be defined by which to predict the encoder bit
rate that will yield a sequence having any targeted PSNR level. In a second method, MPEG-2-processed sequences are
linearly combined with their unprocessed video sources. Linear regression is used to relate PSNR to the weighting factors
used in combining the source and processed sequences. Then the "synthetically" adjusted impairments are compared to those
created via an encoder. Visual comparison is made between corresponding 1-,B-, and P-frames of the synthetically generated
sequences and those processed by the codec. Also, PSNR comparisons are made between various combinations of sourCe
sequence, the MPEG-2 sequence used for mixing, the mixed sequence, and the codec-processed sequence. Both methods are
found to support precision adjustment of impairment level adequate for visual threshold measurement. The authors caution
that some realism may be lost when using the weighted summation method with highly compression-impaired video.

Keywords: video quality, video impairment, MPEG-2, video compression, PSNR, simulated impairment

1. INTRODUCTION

Because bandwidth is likely to remain at a premium, it also is likely that digital video will continue to be compressed as
much as possible, limited only by the tolerance of the human viewer for a degraded picture. Accordingly, the digital video
industry recognizes a need for objective quality metrics which have been calibrated to human subjective quality assessments.
The need to support objective computational methods with human visual data has spurred several major research efforts,
including those described in [2] and [3]. While both of these projects support improvement of video quality computational
models, they address the quality issue at quite different levels of abstraction.

The study organized and executed by the Video Quality Experts Group (VQEG), described in [2] uses an approach of the
television industry for subjective picture quality assessment. The methods, detailed in [4], generally involve assigning values
of a numerical category scale, discrete or continuous, to video sequences based on each viewer's personal opinion of its
quality relative to either an explicit or implicit reference. Generally, training is provided in an effort to "calibrate" internal
scales of the viewers. But the precise nature of the scale by which each viewer assigns ratings is not observable directly.
Also, unknown are the relative importance each viewer gives to each spatio-temporal distortion. Moreover, such an ordering
may vary among viewers, or even may vary for a single viewer over the duration of the testing period.

However, such procedures have the advantage that they are efficient. They integrate a number of disparate quality elements,
spatial and temporal, explicit and implicit, into a single value. Furthermore, the quality rating procedures tend to use test
material in which picture distortions and their context are identical to or close to that which the viewers will see on television
screens or multimedia monitors. Such stimuli retain an element of realism that may be lacking in simpler, highly-controlled
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stimuli. But the trade-off in yielding control is that the investigator does not know either the image characteristics that elicit a
particular rating, or the functional form of the viewer's internal scale. These features of conventional subjective quality
measurement present some problems to the builder of objective quality models. But with careful design and execution of
experiments, training of subjects, and proper use of statistical analysis such studies continue to contribute useful data to
video quality measurement.

Approaching the quality issue with a more "bottom-up" approach is the ongoing study described in [3]. This effort, known as
"Modelfest" [5] aims to develop a comprehensive database of human visual threshold responses to elemental visual stimuli.
Such stimuli are systematically varied with respect to the spatial and temporal parameters understood to be involved in
human vision. Such data, collected via controlled psychophysical methods, are expected to assist in the development of
increasingly refined and robust computational models of human vision. Such models, in turn, can be directed to the objective
measurement of video quality.

Though not itself the topic of the present investigation, another subjective quality measurement activity has been proposed
[6] that addresses the human visual aspect of quality modeling at an intermediate level of abstraction. The proposed study
will attempt to define a scale of video impairment in terms of multiple measurements of the just-noticeable-difference (JND)
of compression-induced video impairments. Through a series of paired comparisons the investigators will attempt to define a
quantitative function that describes human visual sensitivity to video impairments at varying amplitudes. In this effort,
quality assessment would involve visual perception of actual video impairments in their normal context rather than more
atomic visual stimuli used in most vision experiments. Yet the experimenters will employ quantitative psychophysical
techniques and exert greater control over the stimuli than that characteristic of subjective testing of the sort used in the
VQEG study.

The present investigation is conducted to test candidate methodologies by which to prepare video test materials for the
proposed JND study. In general, psychophysical measurement of a sensory threshold requires that the stimulus characteristic
under study can be varied continuously by the experimenter and that the attribute under study can be gauged on some interval
scale [7]. In the planned JND experiment, it will be necessary to produce video compression artifacts at various levels.
Several methods for doing this were considered by the present investigators.

One approach is to model the spatia-temporal frequency characteristics of various impairments sufficiently so that synthetic
impairments can be inserted into reference image sequences. Such a method is described in [8]. This method is interesting in
the degree of control it offers with respect to the amplitude, distribution, and mix of various impairments. However, unless
the spatia-temporal models of the impairments is very good, the necessary realism, both subjective and objective, would not
support the JND study.

A second approach is suggested by the notion that video impairments are related directly to the parameters used in
controlling the MPEG-2 encoding process. Variation of parameters, such as the target bit rate and group of pictures (GOP)
can result in greater or lesser video impairment. However, the precise effect of these parameters depends on the spatia-
temporal characteristics of the video sequence. Thus, while it is difficult to make general predictions as to the degree of
impairment that might result from a given target bit rate, it should be possible to make such predictions for any particular
video sequence. One objective of the present study is to determine the degree to which the encoder can be directed to output
video having a specified degree of impairment.

A third approach, also to be examined here, is the degree to which video sequences can be generated at specified impairment
levels by linear combination of an MPEG-2 processed (impaired) sequence with its unprocessed source, a weighted
summation of the sequences. This technique has been used in various forms by a number of investigators [9, 10, 11]. On the
surface, it appears obvious that such a linear combination should produce a sequence bearing impairments at a magnitude
somewhere between the two end-members. However, a question remains as to whether sequences generated by combination
of a highly compressed sequence and its source are a realistic simulation of the encoder output at the higher bit rate.
Moreover, to be most useful, the weighted summation scheme should permit combination of scenes without computationally
intensive registration of the sequences. The present investigation examines the effectiveness of the weighted summation
method as a simulation of MPEG-2 encoded video.
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1. Test Material
2. PROCEDURE

Three video clips were selected for the experiments. A sequence of sixty frames was taken from each of the sequences
referred to as Duck, Water, and Mobile and Calendar. A single field of each sequence is shown in Fig. 1, 2, and 3,
respectively.
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Figure 1. Single field of DUCK sequence.
Figure 2. Single field of WATER sequence.

Figure 3. Single field of Mobile & Calendar sequence.

The three sequences were shown in an earlier study [12] to vary in their criticality, or the ease with which they can be
encoded, where higher criticality indicates more difficulty encoding and greater impairment at a given bit rate. The criticality,
C, of the three sequences can be ordered as Cmobile&Calendar» CWater > CDuck . Eachof the 60-frameclipswas processedvia
the MPEG-2 [1] software codec Test Model 5 (TM-5) [13]. The encoding was done at main profile and main level with
GOP=15, M=3, and at target bit rates of 15 Mb/s, 12Mb/s, 10 Mb/s, 8Mb/s, 6 Mb/s, 4 Mb/s, and 2 Mb/s. The TM-5 decod~r
was applied to expand the compressed bit streams back into their original Rec. 601 [Error! Reference source not found.]
component video format, Y,Cb,Cr.
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2. Measurement of Relative Distortion
Any attempt to "tune" the level of a stimulus attribute requires some continuous measure by which to quantify the
attribute[7]. In the present instance, we elected to use the average Peak Signal-to-Noise Ratio (PSNR) of the video sequence,
where the PSNR for each frame is computed according to the expression:

PSNR =20l0glO[ tw.(~~)1

(1)

where b = peak value for channel ( 235 for luminance, y'l, 240 for chrominance channels, Cb and Cr)
m = mean squared difference between processed and source channel
a = 1...3,corresponding to component video channels, Y', Cb, Cr
w = weight, 0.5 for Y', and 0.25 for each chrominance channel

PSNR is comparatively easy to compute and makes no assumptions as to the structure of video impairments or their
perceptibility. It is thus appropriate for control of impairment level in the planned visual threshold experiment. An
alternative might be to use a more sophisticated computational vision model, but this might later compromise the use of the
threshold data for calibration of the vision model.

3. Method 1: Fit-DirectedEncoding

Linear models up to a 4th order polynomial were fit to the average PSNR vs. target bit rate for each of the three video
sequences. Figure 4 exhibits polynomial fits of orders 1 to 4 for the Duck sequence. The dotted curves mark 95 % percent

Figure 4. Polynomial fits of bit rate VS.PSNR for Duck sequences.

1 Please note that in this paper, we adopt the convention of Poynton [15] in referring to non-linear encoded video luma as Y'
and the luminance, i.e., the luminous flux per unit area, as Y.

257

Order1 Order 2

:!
....0

:!
C\I

.'
C\I

.!!!.-
......... ...........

.!!!.-
S? S?
(O

....................:..........Q.......

(O

a: a:<O _<0
in

"t "t

C\I 0 C\I

34 36 38 40 34 36 38 40
PSNR (dB) PSNR (dB)

Order3 Order4

:! :!
C\I C\I

.!!!.- .!!!.-
S? S?
(O (O

a: a:
=<0 =<0
m m

"t "t

C\I C\I

34 36 38 40 34 36 38 40

PSNR (dB) PSNR (dB)



confidence bounds for each fit. Plots obtained for the Water and Mobile & Calendar sequences were so similar that they are
not shown here.

For the Duck sequence, Table I summarizes the standard errors of the predicted bit rate values plotted in Fig. 4. The
coefficients of the fitted 4thorder polynomial are also shown with measures of their standard error and the results of a t-test of
their statistical significance.

Table 1. Standard Error of Bit Rate Predictions fromPSNR - Duck
Original Bit RatEJ 15.0000 12.0000 10:0000 8.0000 6.0000--4.0000

SE Ord!r 1 -I 0.6854 0.5636 0.4853 0.4279 -oA336 0.5777SE Order 2 0.1997 0.1259 0.1130 0.1278 0.1432 0.1384
SE

.

Order 3 I 0.0332 0.0203 0.0217 0.0209 0.0215 0.0297
S60rder 4 ~ 0.0115 0.0089 0.0077 0.0078 0.0092 0.0114

2.~
0.8526
0.2287
0.0351
0.0117

Intercept
Order 1
Order 2
Order 3
Order 4

Coefficients (4th order fit):
Value Std. Error
8.1429 0.0044

10.8959 0.0117
2.4293 0.0117
0.4817 0.0117

-0.0589 0.0117

t value
1845.2161
933.2187
208.0640
41.2535
-5.0471

Pr(>ltl)
o
o
o

0.0006
0.0371

Table I indicates that on the scale of the PSNR, the prediction error is quite small, particularly with the 3tdand 4th order
polynomials. A t-test indicates that even the 4thorder term is significant, but its magnitude is small enough relative to that of
the lower order terms to question its practical significance at the 5 % level.

Similar results are observed with the Water and Mobile & Calendar sequences summarized in Tables 2 and 3, respectively.
As with the Duck sequence, the standard error of bit rate predictions to yield targeted PSNR are extremely small.

Table 2. StandardErrorof Bit RatePredictionsfrom PSNR-Water
OriginalBit Rate '5.0000-12.0000 ~10.oooo 8.0000 6.0000 4.0000 -
'SE Order 1 r 0.5655 0.4483 0.3819 0.3381 - 0.3496 0.4663
SE Order 2 I 0.1300 0.0778 0.0729 0.0819 0.0878 0.0841

SE Order3 1 0.0964 0.0605 0.0627 0.0577 0.0631 0.0807
sg Order~ 0.0073 0.0059 0.0047 0.0050 0.0056 0.0071

2-:-0000:
0.6588
0.1408
0.0995
0.0074

Intercept
Order 1
Order 2
Order 3
Order 4

Coefficients (4th order fit):
Value Std. Error
8.1429 0.0028

10.9987 0.0074
1.9477 0.0074
0.2496 0.0074

-0.1742 0.0074

t value
2918.3186
1489.8650
263.8390

33.8115
-23.6002

Pr(>ltl)
o
o
o

0.0009
0.d018

Table 3. Standard Error of Bit Rate Predictions from PSNR - Mobile & Calendar

Original Bit Rate 15.0000 ,1.2.UOOO10.0000 8.0000 _ 6.0QQ0 4.0000
SE Order 10 0.8085 0.6708 0.5827 0.5167 0.5166 0.6556
SE Order 2 0.1410 0.0904 0.0790 0.0876 0.1010 0.1030
SE Order 3

1

0.0110 0.0067 0.0072 0.0070 0.0069 0.0102
SEO~ 0.0028 0.0021 0.0018 0.0019 0.0022 0.0028

~
1.0735
0.1687
0.0118
0.0028

Intercept
Order1
Order2
Order3
Order4

Coefficients (4th order fit):
Value Std. Error t value
8.1429 0.0011 7639.7098

10.7684 0.0028 3818.5999
2.9624 0.0028 1050.5076
0.3482 0.0028 123.4776
0.0200 0.0028 7.1057
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o
o
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Thus, it appears that if one is able to generate a sample of encoded sequences over a range of bit rates of interest, it is quite
feasible to define, for a given video sequence and encoder, a function that will enable precise control over the PSNR of
additional output sequences.

4. Method 2: WeightedSummationMethod

In some cases direct encoding may not be an option. In the anticipated JND study described previously, for example, a
relatively large volume of video test material is available with associated subjective quality ratings. Source sequences are
available as well as a number of processed versions of the source created by various means including, but not restricted to,
MPEG-2 encoding. The sampling of impairment levels in the available data covers a wide range, but is not sufficiently dense
to support threshold measurements. Replicating the processing to add the required additional sequences is not possible. Also,
the investigators wish to retain the option of relating the threshold measurements to the existing subjective quality ratings.
Such joint analysis would not be compromised by additional encoding, e.g., by using the fit-directed method described
above. Accordingly, a weighted summation method is considered here. In particular, the investigators are interested in
evaluating the departures of the syntheticallygraded impairments from those induced directly by encoding.

For each of the three source sequences described previously, a series of mixed sequences was produced by linear combination
of the source sequence with a corresponding sequence having undergone compression. Thus, the frames of an uncompressed
source sequence, having luma and chroma components (Y:C",Cr), were combined with corresponding frames of a selected
processed sequence (MPEG-2) according to the linear equation

, , -,
(Y , Cb, Cr) sim = (l-t). (Y , Cb, Cr)source+ t. (Y , Cbo' Cro)MPEG-2. (2)

The non-dimensional contrast parameter, 1, ranges on the interval [0,1]. At 1 = 1, one would have the uncompressed source
sequence, while for 1=0, one would have the MPEG-2 impaired sequence. The value of 1was varied in increments of 0.1 to
generate nine impaired sequences from each source combined with an MPEG-2 processed ~ate. This mixing procedure was
performed using both the 2 Mb/s and the 4 Mb/s compressed versions of each source sequence.
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Figure s. Duck: Cubic fit to mixing factor
(t) of 4 Mbls MPEG-2 sequence vs. PSNR.
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The average PSNR was computed for each series of mixed sequences according to Eq. 1. For each series of the synthetically
impaired sequences, a polynomial was fit to the computed PSNR values and the corresponding t values. Figures 5 and 6
exhibit the cubic fits for the Duck sequence, with compressed components2 Mb/s and 4Mb/s, respectively. Figures 7 and 8
are cubic fits to the Mobile & Calendar and Water weighted summation sequences using only the 2 Mb/s MPEG-2 material.
For each of the three source video sequences, the mapping functions enable control over the mixing so as to yield any degree
of impairment, as gauged by the PSNR. The parameters of the fitting functions are summarized in Table 4. As may be
observed, the 3rdorder term is quite small for each of the fits, but was found to reduce the width of 95 % confidence bounds
about the fitted lines in each case.

Table 4. Polynomial Fits
Sequence Intercept
Duck 4Mbps 16.355072
Duck 2 Mbps 14.173794
M & C 2 Mbps 8.841076
Water 2 Mbps 12.211709

x
-0.858686
-0.774368
-0.551443
-0.696499

xl\2
0.015467
0.014545
0.011941
0.013697

xl\3
-0.000095
-0.000093
-0.000089
-0.000092

Insofar as MPEG-2 is designed to adjust its encoding mechanisms to target a bit rate selected by the user, it is not surprising
that a pixel level metric such as PSNR should be so tightly coupled to the bit rates of sequences linearly added to one another.
The similarity of the functional forms depicted in Fig. 5 - 8 and parametrized in Table 4 reinforce this notion, but also
indicate that the precise relationship between bit rate and PSNR is dependent upon the particular video sequence.

Given that the weighted summation method can be used to generate video sequences having any targeted level of distortion,
the investigators performed a qualitative examination to verify that synthetically impaired sequences were visually similar to
MPEG-2 sequences matched according to PSNR. Selected I-frames, B-frames, and P-frames were examined to verify the
weighted summation frames were similar in appearance to those created by encoding. The PSNR contrasts between
sequences provide a quantitative measure of similarity.

3. RESULTSANDDISCUSSION

Fig. 9, 10, and 11 exhibit enlarged portions of 1-, P-, and B-frames sampled from the Duck sequences. In each figure, the
source image (a) has been linearly combined with the MPEG-2 encoded frame (c) to produce the weighted summation frame
(d). As explained above, the mixing parameters were selected so that the mixed frame (d) would be similar to (b) both
visually and with respect to PSNR. Figure 12 displays a similar arrangement of corresponding I-frames of the Mobile &
Calendar sequence.

For the Duck sequence, the mixing of the source was done with the 2 Mb/s compressed sequence. The Mobile & Calendar
source sequence was mixed with its 4 Mb/s counterpart. In all cases, the mixed sequences are acceptably similar to the
directly encoded versions, though some small differences may be seen in the Mobile & Calendar images.

Quantitative comparisons of the images sequences shown were made among the sequences using PSNR. The results are
summarized in Table 5. While PSNR might not fully capture the potential structural differences between the images, the
investigators thought it a reasonable comparison to make for their purposes. It does confirm, for example, that the global
error relationships between the source sequence and the other three sequences are in the proper order. As expected, the error

Table 5. PSNR Comparisons of Test Sequences
InterpolatedClips a x b ax c a x d
Duck(2 Mbps) 33.4843 28.5762 39.7288
Duck(4 Mbps) 34.4634 32.2573 36.6335
Mobile(4 Mbps) 26.0395 24.7771 26.6539

bxd
37.5358
45.7107
30.4058

a = Source

b = MPEG-2 Sequence at 6 Mb/s
c = MPEG-2 at 2 Mb/s
d = Source + MPEG-2 such that PSNR == 6 Mb/s

Duck mixed with both 2- and 4- Mb/s sequences
PSNRs are averaged over 1 GOP
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Figure 9. Enlarged portions of Source and processed I-frames. Appearance of weighted sununation frame (d) generated from (a) and
(c) to targeted PSNR of 6 Mb/s is similar in appearance to MPEG-2 frame encoded at 6 Mbls. (Pixel coordinates are shown along
image margins.)
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totargetedPSNRof6 Mb/s is simllar in appearance to MPEG-2frame encodedat 6Mbls. (pixelcoordinatesare shownalongimage
margins.)

is greatest (i.e., lower PSNR) in the comparison of the source with the lower bit rate MPEG-2 sequence (a x c). It also is
encouraging that the lowest error is found in the comparison of the 6 Mb/s MPEG-2 sequence and the mixed sequence
produced as a simulation of 6 Mb/s encoding (b x d). The unexpected result is that the error between the source and encoded
sequence (a x b) is greater than that between source and simulation (a x d). In this regard, it is interesting as well that the
effect is less pronounced when the 4 Mb/s sequence is used in the weighted summation.

The latter result implies that when the source is linearly combined with a severely impaired sequence, the result more closely
resembles the source than the encoded sequence it was intended to simulate. We might assume, for example, that the
impairment pattern itself remains relatively constant except for an increase in relative amplitude as bit rate is reduced. We
would expect, in this case, that the simulation of a 6 Mb/s sequence should be a close approximation to the encoded 6 Mb/s
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sequence. Moreover, we would expect the simulated sequence to bear no greater similarity to the source sequence that that
exhibited by the encoded sequence. If, on the other hand, the impairment pattern were to change markedly at very low bit
rates, the mixing based on PSNR would fail to behave linearly. The disruption of the impairment pattern would inflate the
PSNR so that a greater weight would be assigned to the source sequence than that which would be predicted by the linear
relationship. Hence, the simulation of the impaired sequence would be more like the source and less like the MPEG-2
impaired sequence. This is consistent with the results for the Duck sequence observed in Table 5.

4. CONCLUSION

We find that either of two methods may be used to generate variably impaired test material suitable for threshold studies of
impairment visibility. For any source sequence, simple curve fitting results in a polynomial function by which to set the
encoder bit rate parameter to produce an output sequence having a targeted PSNR level. Moreover, such control over the
encoding error rate is highly precise, provided that the function derivation is restricted to each sequence of the source video.

In the case that fit-directed encoding is not possible, linear combination of an impaired sequence with its source can be used
to generate video at intermediate levels of impairment. The linearity of this process appears to break down to some extent,
however,whenthe weightedsummationwiththe sourceis donewith a low bit rate « 4 Mb/s)MPEG-2sequence.In this
case, some realism may be lost.
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